Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.577
Filtrar
1.
J Nanobiotechnology ; 22(1): 156, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589867

RESUMO

Immunotherapy has revolutionized the treatment of cancer. However, its efficacy remains to be optimized. There are at least two major challenges in effectively eradicating cancer cells by immunotherapy. Firstly, cancer cells evade immune cell killing by down-regulating cell surface immune sensors. Secondly, immune cell dysfunction impairs their ability to execute anti-cancer functions. Radiotherapy, one of the cornerstones of cancer treatment, has the potential to enhance the immunogenicity of cancer cells and trigger an anti-tumor immune response. Inspired by this, we fabricate biofunctionalized liposome-like nanovesicles (BLNs) by exposing irradiated-cancer cells to ethanol, of which ethanol serves as a surfactant, inducing cancer cells pyroptosis-like cell death and facilitating nanovesicles shedding from cancer cell membrane. These BLNs are meticulously designed to disrupt both of the aforementioned mechanisms. On one hand, BLNs up-regulate the expression of calreticulin, an "eat me" signal on the surface of cancer cells, thus promoting macrophage phagocytosis of cancer cells. Additionally, BLNs are able to reprogram M2-like macrophages into an anti-cancer M1-like phenotype. Using a mouse model of malignant pleural effusion (MPE), an advanced-stage and immunotherapy-resistant cancer model, we demonstrate that BLNs significantly increase T cell infiltration and exhibit an ablative effect against MPE. When combined with PD-1 inhibitor (α-PD-1), we achieve a remarkable 63.6% cure rate (7 out of 11) among mice with MPE, while also inducing immunological memory effects. This work therefore introduces a unique strategy for overcoming immunotherapy resistance.


Assuntos
Lipossomos , Neoplasias , Humanos , Lipossomos/metabolismo , Neoplasias/radioterapia , Neoplasias/metabolismo , Macrófagos/metabolismo , Imunoterapia , Etanol/metabolismo , Linhagem Celular Tumoral
2.
Oral Dis ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622872

RESUMO

OBJECTIVES: Acute and chronic orofacial pain are very common and remain a vexing health problem that has a negative effect on the quality of life. Serotonin (5-HydroxyTryptamine, 5-HT) is a kind of monoamine neurotransmitter that is involved in many physiological and pathological processes. However, its role in orofacial pain remains inconclusive. Therefore, this review aims to summarize the recent advances in understanding the effect exerted by 5-HT on the modulation of orofacial pain. SUBJECTS AND METHODS: An extensive search was conducted on PubMed and Web of Science for pertinent studies focusing on the effects of 5-HT on the modulation of orofacial pain. RESULTS: In this review, we concisely review how 5-HT mediates orofacial pain, how 5-HT is regulated and how we can translate these findings into clinical applications for the prevention and/or treatment of orofacial pain. CONCLUSIONS: 5-HT plays a key role in the modulation of orofacial pain, implying that 5-HT modulators may serve as effective treatment for orofacial pain. However, further research on the precise mechanisms underlying the modulation of orofacial pain is still warranted.

3.
Small ; : e2401330, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623959

RESUMO

Cu2ZnSn (S,Se)4 (CZTSSe), a promising absorption material for thin-film solar cells, still falls short of reaching the balance limit efficiency due to the presence of various defects and high defect concentration in the thin film. During the high-temperature selenization process of CZTSSe, the diffusion of various elements and chemical reactions significantly influence defect formation. In this study, a NaOH-Se intermediate layer introduced at the back interface can optimize Cu2ZnSnS4 (CZTS)precursor films and subsequently adjust the Se and alkali metal content to favor grain growth during selenization. Through this back interface engineering, issues such as non-uniform grain arrangement on the surface, voids in bulk regions, and poor contact at the back interface of absorber layers are effectively addressed. This method not only optimizes morphology but also suppresses deep-level defect formation, thereby promoting carrier transport at both interfaces and bulk regions of the absorber layer. Consequently, CZTSSe devices with a NaOH-Se intermediate layer improved fill factor, open-circuit voltage, and efficiency by 13.3%. This work initiates from precursor thin films via back interface engineering to fabricate high-quality absorber layers while advancing the understanding regarding the role played by intermediate layers at the back interface of kesterite solar cells.

4.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612855

RESUMO

Odontoblastic differentiation of human stem cells from the apical papilla (hSCAPs) is crucial for continued root development and dentin formation in immature teeth with apical periodontitis (AP). Fat mass and obesity-associated protein (FTO) has been reported to regulate bone regeneration and osteogenic differentiation profoundly. However, the effect of FTO on hSCAPs remains unknown. This study aimed to identify the potential function of FTO in hSCAPs' odontoblastic differentiation under normal and inflammatory conditions and to investigate its underlying mechanism preliminarily. Histological staining and micro-computed tomography were used to evaluate root development and FTO expression in SD rats with induced AP. The odontoblastic differentiation ability of hSCAPs was assessed via alkaline phosphatase and alizarin red S staining, qRT-PCR, and Western blotting. Gain- and loss-of-function assays and online bioinformatics tools were conducted to explore the function of FTO and its potential mechanism in modulating hSCAPs differentiation. Significantly downregulated FTO expression and root developmental defects were observed in rats with AP. FTO expression notably increased during in vitro odontoblastic differentiation of hSCAPs, while lipopolysaccharide (LPS) inhibited FTO expression and odontoblastic differentiation. Knockdown of FTO impaired odontoblastic differentiation, whereas FTO overexpression alleviated the inhibitory effects of LPS on differentiation. Furthermore, FTO promoted the expression of secreted modular calcium-binding protein 2 (SMOC2), and the knockdown of SMOC2 in hSCAPs partially attenuated the promotion of odontoblastic differentiation mediated by FTO overexpression under LPS-induced inflammation. This study revealed that FTO positively regulates the odontoblastic differentiation ability of hSCAPs by promoting SMOC2 expression. Furthermore, LPS-induced inflammation compromises the odontoblastic differentiation of hSCAPs by downregulating FTO, highlighting the promising role of FTO in regulating hSCAPs differentiation under the inflammatory microenvironment.


Assuntos
Lipopolissacarídeos , Osteogênese , Humanos , Animais , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X , Inflamação/genética , Proteínas de Ligação ao Cálcio , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
5.
MedComm (2020) ; 5(4): e540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606360

RESUMO

Senile plaque, composed of amyloid ß protein (Aß) aggregates, is a critical pathological feature in Alzheimer's disease (AD), leading to cognitive dysfunction. However, how Aß aggregates exert age-dependent toxicity and temporal cognitive dysfunction in APP/PS1 mice remains incompletely understood. In this study, we investigated AD pathogenesis and dynamic alterations in lysosomal pathways within the hippocampus of age-gradient male mice using transcriptome sequencing, molecular biology assays, and histopathological analyses. We observed high levels of ß-amyloid precursor protein (APP) protein expression in the hippocampus at an early stage and age-dependent Aß deposition. Transcriptome sequencing revealed the enrichment of differential genes related to the lysosome pathway. Furthermore, the protein expression of ATP6V0d2 and CTSD associated with lysosomal functions exhibited dynamic changes with age, increasing in the early stage and decreasing later. Similar age-dependent patterns were observed for the endosome function, autophagy pathway, and SGK1/FOXO3a pathway. Nissl and Golgi staining in the hippocampal region showed age-dependent neuronal loss and synaptic damage, respectively. These findings clearly define the age-gradient changes in the autophagy-lysosome system, the endosome/lysosome system, and the SGK1/FOXO3a pathway in the hippocampus of APP/PS1 mice, providing new perspectives and clues for understanding the possible mechanisms of AD, especially the transition from compensatory to decompensated state.

6.
Plants (Basel) ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611541

RESUMO

Plant structure has a large influence on crop yield formation, with branching and plant height being the important factors that make it up. We identified a gene, MtTCP18, encoding a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor highly conserved with Arabidopsis gene BRC1 (BRANCHED1) in Medicago truncatula. Sequence analysis revealed that MtTCP18 included a conserved basic helix-loop-helix (BHLH) motif and R domain. Expression analysis showed that MtTCP18 was expressed in all organs examined, with relatively higher expression in pods and axillary buds. Subcellular localization analysis showed that MtTCP18 was localized in the nucleus and exhibited transcriptional activation activity. These results supported its role as a transcription factor. Meanwhile, we identified a homozygous mutant line (NF14875) with a mutation caused by Tnt1 insertion into MtTCP18. Mutant analysis showed that the mutation of MtTCP18 altered plant structure, with increased plant height and branch number. Moreover, we found that the expression of auxin early response genes was modulated in the mutant. Therefore, MtTCP18 may be a promising candidate gene for breeders to optimize plant structure for crop improvement.

7.
Cell Biosci ; 14(1): 49, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632627

RESUMO

Reciprocal interactions between the tumor microenvironment (TME) and cancer cells play important roles in tumorigenesis and progression of glioma. Glioma-associated macrophages (GAMs), either of peripheral origin or representing brain-intrinsic microglia, are the majority population of infiltrating immune cells in glioma. GAMs, usually classified into M1 and M2 phenotypes, have remarkable plasticity and regulate tumor progression through different metabolic pathways. Recently, research efforts have increasingly focused on GAMs metabolism as potential targets for glioma therapy. This review aims to delineate the metabolic characteristics of GAMs within the TME and provide a summary of current therapeutic strategies targeting GAMs metabolism in glioma. The goal is to provide novel insights and therapeutic pathways for glioma by highlighting the significance of GAMs metabolism.

8.
Theor Appl Genet ; 137(5): 96, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589730

RESUMO

KEY MESSAGE: A total of 416 InDels and 112 SNPs were significantly associated with soybean photosynthesis-related traits. GmIWS1 and GmCDC48 might be related to chlorophyll fluorescence and gas-exchange parameters, respectively. Photosynthesis is one of the main factors determining crop yield. A better understanding of the genetic architecture for photosynthesis is of great significance for soybean yield improvement. Our previous studies identified 5,410,112 single nucleotide polymorphisms (SNPs) from the resequencing data of 219 natural soybean accessions. Here, we identified 634,106 insertions and deletions (InDels) from these 219 accessions and used these InDel variations to perform principal component and linkage disequilibrium analysis of this population. The genome-wide association study (GWAS) were conducted on six chlorophyll fluorescence parameters (chlorophyll content, light energy absorbed per reaction center, quantum yield for electron transport, probability that a trapped exciton moves an electron into the electron transport chain beyond primary quinone acceptor, maximum quantum yield of photosystem II primary photochemistry in the dark-adapted state, performance index on absorption basis) and four gas-exchange parameters (intercellular carbon dioxide concentration, stomatal conductance, net photosynthesis rate, transpiration rate) and revealed 416 significant InDels and 112 significant SNPs. Based on GWAS results, GmIWS1 (encoding a transcription elongation factor) and GmCDC48 (encoding a cell division cycle protein) with the highest expression in the mapping region were determined as the candidate genes responsible for chlorophyll fluorescence and gas-exchange parameters, respectively. Further identification of favorable haplotypes with higher photosynthesis, seed weight and seed yield were carried out for GmIWS1 and GmCDC48. Overall, this study revealed the natural variations and candidate genes underlying the photosynthesis-related traits based on abundant phenotypic and genetic data, providing valuable insights into the genetic mechanisms controlling photosynthesis and yield in soybean.


Assuntos
Estudo de Associação Genômica Ampla , Soja , Soja/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fotossíntese/genética , Clorofila/metabolismo
10.
MedComm (2020) ; 5(4): e506, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525110

RESUMO

Recombinant proteins are gaining increasing popularity for treating human diseases. The clinical effectiveness of recombinant proteins is directly related to their biological activity, which is an important indicator in drug development and quality control. However, certain recombinant proteins have unclear or complex signal pathways, making detecting their activity in vitro difficult. For instance, recombinant human endostatin (endostatin), a new antitumor drug developed in China, lacks a sensitive and stable assay for its biological activity since being market approval. To address this issue, we performed a genome-wide screening of immortalized human umbilical vein endothelial cells (HUVECs) using a CRISPR/Cas9 knockout library containing 20,000 targeted genes. We identified two potential endostatin-resistant genes, NEPSPP and UTS2, and successfully constructed a highly sensitive cell line, HUVEC-UTS2-3#, by knocking down the UTS2 gene. Based on the optimized parameters of HUVEC-UTS2-3# cells, we established a new method for detecting the biological activity of endostatin. The method was validated, and it produced results consistent with primary HUVEC cells but with higher sensitivity and more stable data. The use of gene-editing technology provides a novel solution for detecting the biological activity of recombinant proteins that other methods cannot detect.

11.
Mol Ther ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454607

RESUMO

Inflammation resolution is an essential process for preventing the development of chronic inflammatory diseases. However, the mechanisms that regulate inflammation resolution in psoriasis are not well understood. Here, we report that ANKRD22 is an endogenous negative orchestrator of psoriasiform inflammation because ANKRD22-deficient mice are more susceptible to IMQ-induced psoriasiform inflammation. Mechanistically, ANKRD22 deficiency leads to excessive activation of the TNFRII-NIK-mediated noncanonical NF-κB signaling pathway, resulting in the hyperproduction of IL-23 in DCs. This is due to ANKRD22 being a negative feedback regulator for NIK because it physically binds to and assists in the degradation of accumulated NIK. Clinically, ANKRD22 is negatively associated with IL-23A expression and psoriasis severity. Of greater significance, subcutaneous administration of an AAV carrying ANKRD22-overexpression vector effectively hastens the resolution of psoriasiform skin inflammation. Our findings suggest ANKRD22, an endogenous supervisor of NIK, is responsible for inflammation resolution in psoriasis, and may be explored in the context of psoriasis therapy.

12.
Am J Cancer Res ; 14(2): 679-695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455402

RESUMO

Among pediatric blood cancers, acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy. Within ALL, T-cell acute lymphoblastic leukemia (T-ALL) accounts for 10 to 15% of all pediatric cases, and ~25% of adult cases. For T-ALL, its recurrence and relapse after treatment remain problematic. Therefore, it is necessary to develop new therapies for T-ALL. Recent studies suggested regulating energy metabolism is a novel approach to inhibit tumor growth, likely a promising treatment. Transketolase (TKT) is an important enzyme for modulating glucose metabolize in the pentose phosphate pathway (PPP). In this study, we treated T-ALL cells with different doses of niclosamide and primary T-ALL PBMCs were analyzed by RNA sequencing. T-ALL cells treated with niclosamide were analyzed with the Western blotting and TKT activity assay. Metabolism of T-ALL cells was evaluated by ATP assay and seahorse analyses. Lastly, we used a T-ALL xenograft murine model to determine effects of TKT knockdown on T-ALL tumor growth. Tumor samples were analyzed by H&E and IHC stainings. We found that niclosamide reduced T-ALL cell viability, and reduced expressions of TKT, Transketolase-Like Protein 1/2 (TKTL1/2) and transaldolase. In addition, niclosamide inhibited TKT enzyme activity, aerobic metabolism and glycolysis, finally leading to lower production of ATP. TKT knockdown inhibited tumor growth of xenograft T-ALL mice. Findings showed that niclosamide inhibits T-ALL cell growth by inhibiting TKT and energy metabolism.

13.
mBio ; : e0017524, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551343

RESUMO

Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the Food and Drug Administration are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These recommended antivirals are currently effective for major subtypes of IVs as the compounds target conserved domains in neuraminidase or polymerase acidic (PA) protein. However, this trend may gradually change due to the selection of antiviral drugs and the natural evolution of IVs. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.

14.
Int J Biol Macromol ; 266(Pt 2): 131076, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38531522

RESUMO

Physically crosslinked hydrogels have shown great potential as excellent and eco-friendly matrices for wound management. Herein, we demonstrate the development of a thermosensitive chitosan hydrogel system using CaCO3 as a gelling agent, followed by CaCO3 mineralization to fine-tune its properties. The chitosan hydrogel effectively gelled at 37 °C and above after an incubation period of at least 2 h, facilitated by the CaCO3-mediated slow deprotonation of primary amine groups on chitosan polymers. Through synthesizing and characterizing various chitosan hydrogel compositions, we found that mineralization played a key role in enhancing the hydrogels' mechanical strength, viscosity, and thermal inertia. Moreover, thorough in vitro and in vivo assessments of the chitosan-based hydrogels, whether modified with mineralization or not, demonstrated their outstanding hemostatic activity (reducing coagulation time by >41 %), biocompatibility with minimal inflammation, and biodegradability. Importantly, in vivo evaluations using a rat burn wound model unveiled a clear wound healing promotion property of the chitosan hydrogels, and the mineralized form outperformed its precursor, with a reduction of >7 days in wound closure time. This study presents the first-time utilization of chitosan/CaCO3 as a thermogelation formulation, offering a promising prototype for a new family of thermosensitive hydrogels highly suited for wound care applications.

15.
Brain Behav Immun ; 119: 129-145, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552923

RESUMO

GSDMD-mediated pyroptosis occurs in the nigrostriatal pathway in Parkinson's disease animals, yet the role of GSDMD in neuroinflammation and death of dopaminergic neurons in Parkinson's disease remains elusive. Here, our in vivo and in vitro studies demonstrated that GSDMD, as a pyroptosis executor, contributed to glial reaction and death of dopaminergic neurons across different Parkinson's disease models. The ablation of the Gsdmd attenuated Parkinson's disease damage by reducing dopaminergic neuronal death, microglial activation, and detrimental transformation. Disulfiram, an inhibitor blocking GSDMD pore formation, efficiently curtailed pyroptosis, thereby lessening the pathology of Parkinson's disease. Additionally, a modification in GSDMD was identified in the blood of Parkinson's disease patients in contrast to healthy subjects. Therefore, the detected alteration in GSDMD within the blood of Parkinson's disease patients and the protective impact of disulfiram could be promising for the diagnostic and therapeutic approaches against Parkinson's disease.

16.
Int Immunopharmacol ; 131: 111857, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38489973

RESUMO

INTRODUCTION: Brain dysfunction in sepsis is known as Sepsis-associated encephalopathy (SAE), which often results in severe cognitive and neurological sequelae and increases the risk of death. Neuron specific enolase (NSE) may serve as an important neurocritical biomarker for detection and longitudinal monitoring in SAE patients. Our Meta-analysis aimed to explore the diagnostic and prognostic value of serum NSE in SAE patients. Currently, no systematic Review and Meta-analysis have been assessed that NSE as a biomarker of SAE. METHODS: The study protocol was registered in the PROSPERO database (CRD42023398736) and adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We conducted a systematic review and Meta-analysis to evaluate the serum NSE's diagnostic accuracy for SAE and prognostic strength for probability of death of septic patients. We systematic searched electronic bibliographic databases from PubMed, MEDLINE, Web of Science, Embase, Cochrane databases, CNKI, CQVIP, and WFSD. QUADAS-2 assessment tool was used to evaluate quality and risk of bias of the selected studies. Subgroup analyses, funnel plots, sensitivity analyses were also carried out. Review Manager version 5.4 and Stata16.0. was used for statistical analysis. RESULTS: This Meta-analysis included 22 studies with 1361 serum samples from SAE patients and 1580 serum samples from no-encephalopathy septic (NE) patients. The Meta-analysis showed that individuals with SAE had higher serum NSE level than NE controls (SMD 1.93 (95 % CI 1.51-2.35), P < 0.00001). In addition, there are 948 serum samples from survival septic patients and 446 serum samples from non-survival septic patients, septic patients with survival outcomes had lower serum NSE levels than those with death outcomes (SMD -1.87 (95 % CI -2.43 to -1.32), P < 0.00001). CONCLUSION: Our Meta-analysis reveals a significant association between elevated NSE concentrations and the increased likelihood of concomitant SAE and mortality during septic patients. This comprehensive analysis will equip ICU physicians with up-to-date insights to accurately identify patients at risk of SAE and implement appropriate intervention strategies to mitigate morbidity and improve neurological outcomes. However, it is important to note that the presence of substantial heterogeneity among studies poses challenges in determining the most effective discrimination cutoff values and optimal sampling collection time.


Assuntos
Encefalopatias , Encefalopatia Associada a Sepse , Sepse , Humanos , Encefalopatia Associada a Sepse/diagnóstico , Sepse/diagnóstico , Biomarcadores , Prognóstico , Encefalopatias/diagnóstico , Fosfopiruvato Hidratase
18.
Org Biomol Chem ; 22(15): 2968-2973, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38529682

RESUMO

An Fe-catalyzed visible-light induced condensation of alkylbenzenes with anthranilamides has been developed. Upon irradiation, the trivalent iron complex could generate chlorine radicals, which successfully abstracted the hydrogen of benzylic C-H bonds to form benzyl radicals. And these benzyl radicals were converted into oxygenated products under air conditions, which subsequently reacted with anthranilamides for the synthesis of quinazolinones.

19.
Sci Total Environ ; 927: 171965, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547979

RESUMO

Snow cover phenology (SCP) strongly affects forest spring phenology (the start of growing season, SOS), but the underlying mechanism of the relationship varies. In this study, we aimed to analyze the relationship between forest SOS and SCP, and investigate the mechanisms about how changes of SCP affect forest SOS. To do so, we extracted forest SOS and SCP from multiple remote sensing datasets and analyzed the spatio-temporal patterns of both in Changbai Mountains (2001-2020). We assessed the relationships between SCP and forest SOS using partial least squares regression analysis and investigated the potential mechanism of SCP changes affecting on forest SOS using path analysis. We found earlier forest SOS (-0.5 days/year), prolonged snow cover duration (SCD, 0.43 day/year), and earlier snow cover end day (SCED, -0.1 days/year) in the region. The results indicated that SCD showed negative influence while SCED showed positive influence on forest SOS in most of the region. Results revealed that the influence of SCP on forest SOS was mainly through altering spring temperature and the dominant path of SCP influencing forest SOS followed hydrothermal gradients. Our study reveals new insights into the influence of changing SCP on forest SOS, which provides the theoretical basis for including SCP in the phenological models.


Assuntos
Florestas , Estações do Ano , Neve , China , Monitoramento Ambiental , Mudança Climática , Árvores
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458543

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the most frequent subtype of head and neck cancer, generally with a poor prognosis and limited therapeutic options due to its highly heterogeneous malignancy. In this study, we screened functional splicing regulatory RNA binding proteins (RBPs) that were closely related with the prognosis of HNSCC patients and showed significant expression differences between HNSCC tumors and normal tissues. Based on this finding, we chose six candidate genes (HNRNPC, ZCRB1, RBM12B, SF3A2, SF3B3, and SRSF11) to generate a prognostic prediction model and validated the accuracy of the prognostic model for predicting patient survival outcomes. We found that the risk score predicted by our model can serve as an independent prognostic predictor. Notably, HNSCC tumors showing higher expression of SF3B3, HNRNPC, or ZCRB1 possessed higher risk scores in the discovered prediction model. The investigation of the underlying mechanism validated that knockdown of SF3B3, HNRNPC, and ZCRB1 separately induced a substantial impairment of HNSCC cell survival. Conversely, overexpression of each of the three genes promoted tumor cellular proliferation. High throughput RNA sequencing analysis revealed that changes in the expression of SF3B3 and HNRNPC remarkably affected alternative splicing of genes related to cell cycle regulation, whereas the depletion of ZCRB1 contributed to aberrant splicing events involving in DNA damage response. In addition, the prognostic prediction model's risk score was demonstrated to be related with the immune infiltration score. Particularly, SF3B3 has a negative correlation with CD8A expression. Therefore, our findings provide promising prognosis predictors and potential therapeutic targets for better treatment efficacy of HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Oncogenes , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Processamento de RNA/genética , Processamento Alternativo , Neoplasias de Cabeça e Pescoço/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...